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Abstract

This paper applies recent developments in power law estimation (“Power-Law dis-
tributions in empirical data”, Clauset, A., C. Shalizi, and M. Newman (2009), SIAM
Review 51(4), 661–703) to reject or fail to reject the null hypothesis that the firm size
distribution is best fit with a power law. I use data from Compustat and OSIRIS on
several countries, and confidential microdata on Canadian establishments and firms. I
fit power-law, log-normal and power-law with exponential cutoff distributions to each
dataset, and test the following two hypotheses: does the data reject the power-law
fit? If not, does the data reject a power law fit in favour of an alternative distribution
(specifically, one with thinner tails). I find that a power law distribution fits the U.S.
firm size distribution for most years, but France and Germany confidently reject the
null hypothesis that their firm size distributions are best fit with power laws. Canadian
firms, both public and private, reject the power-law null hypothesis, but Canadian es-
tablishments do not. As an application, I use the estimated power laws to calculate firm
size herfindahls to estimate the implied contribution of idiosyncratic shocks to aggregate
volatility in different countries. That the power law distributions produce herfindahl
results that run strongly counter to the data is a consequence of a seemingly well-fit
distribution failing exactly where it matters in economics—in the top 10 or 20 firms.

1 Introduction

We are always looking for simple laws to explain economic behaviour. The power law is

a perfect example; the upper tail of distributions of several economic phenomena seem to

obey a scale-free law relating the size and rank of individuals (Gabaix, 2009). The firm

size distribution is an especially important application of this law; a scale-free firm size

distribution has dramatic consequences for several fields of economics, including studies on

gains from trade (Di Giovanni et al., 2011; Di Giovanni and Levchenko, 2012, 2013; Nigai,

2017), as well as idiosyncratic volatility (Gabaix, 2011).

However, the empirical evidence supporting power law distributions is weak. In many

applications, the methodology is: (1) eyeball the upper tail of the distribution on a log-log

plot of rank vs. size and guess where it starts to look linear; (2) estimate via OLS the slope

of the line (on the data above the eyeballed cutoff); (3) claim a high R2 means a power
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Figure 1: Difference in curvature on rank-size plot for the US and Canada.

Notes: Canadian firm data from OSIRIS, US firm data from Compustat. Petroleum and Finanial firms have
been removed. Note also the trouble with public company sales data: George Weston Ltd. has a controlling
interest in Loblaw Companies Ltd. and reports Loblaw Co. Ltd.’s sales as its own (see, e.g., page 9 of the
George Weston Ltd. Annual report (http://www.weston.ca/en/pdf_en/gwl_2016ar_en.pdf), which means
Loblaw’s $40B sales are reported twice. This double counting skews the relationship a bit; to correct this, I
also look at confidential survey and administrative data that does not suffer from this issue.

law fits the data well. The estimated slope is used as the scale exponent for the power-law.

For instance, in Figure 1, the shapes of the distributions are clearly very different, but an

OLS fit to each plot will give a reasonable scale exponent and a high R2. One should not

conclude that both of these distributions are best fit with a power-law.

Despite the obvious drawbacks noted (even in the papers that use it), this methodology

is used to justify many empirical power laws. The OLS methodology is so easy to use,

and power laws are so simple and enticing to use in theory, that we don’t apply the same

statistical rigour that instrumental variables, for instance, would attract. My goal here is

to apply recent developments in power law estimation (Clauset et al., 2009; Broido and

Clauset, 2018) to reject or fail to reject the null hypothesis that the firm size distribution

is best fit with a power law.

I use several sources of firm microdata: Compustat, OSIRIS and confidential microdata

sources on Canadian establishments and firms. In each dataset, and each year, I estimate the

upper tail cutoff xmin, the power law scale exponent α, as well as alternative distributions

with thinner tails (the log-normal, and the power law with exponential cutoff). I calculate

p-values for each important hypothesis: does the data reject the power law fit? If not, does

the data reject a power law fit in favour of an alternative distribution (specifically, one with

thinner tails). The conclusions matter for our understanding of firm heterogeneity—how
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skewed are our firm distributions?

This work contributes to two main strands of literature. First, the estimation of fat

tailed distributions. Several methods have been proposed and refined, although all revolve

around a rule-of-thumb for finding the cutoff of the upper tail. For distributions that aren’t

truly power laws, the estimated scale exponent changes non-trivially with the cutoff, which

means a researcher can easily draw the conclusions they’d like by varying the cutoff, and

justify their choice with the resulting high R2 given by the OLS estimate. Here, I adopt the

much stricter methodology proposed by Clauset et al. (2009); Broido and Clauset (2018)

that are used to estimate power laws in scale-free networks. A few estimation studies have

changed track from estimating the upper tail to estimating the whole distribution. However,

the conclusions of these papers still rely on a power law fitting the best on the upper tail,

and then arguing for or against other distributions in the middle and lower tail of the

distributions. If the upper tail is not truly a power law, these methods also have room to

improve.

Secondly, this work is important for the application of power laws to economics. For

an overall review of power laws in economics, see Gabaix (2009). Some of the proposed

power laws are more robust than others. The city size distribution, for instance, seems

robust to different specifications, as long as one adopts a sprawling definition of city: e.g.,

the US Census Bureau created ‘combined statistical areas’ (CSAs) to better represent the

size of cities that sprawl over several municipal areas, and power law estimations of this

type of city size distributions are more robust to estimation methods (see, e.g., the evolving

research on Zipf’s law for city sizes, including Gabaix (1999); Eeckhout (2004); Rozenfeld

et al. (2011)).

However, research on power laws for firm sizes hasn’t received the same attention. The-

ory suggests that trade increases the skew of the power law tail as size increases, because

the most productive firms get access to more and more markets, which further increases

their sizes. The data do not seem to support this. Since gains from trade in some models

depends on the shape of the firm size distribution (Nigai, 2017; Head et al., 2014; Feenstra,

2018), correctly estimating the upper tail of the distribution is very important. An even

stronger motivation comes from research on the microfoundations of aggregate volatility.

The argument is that if the firm size distribution is skewed enough, the biggest firms are so

big that idiosyncratic shocks to them aren’t washed out by random shocks to other firms

in the economy (Gabaix, 2011; Acemoglu et al., 2012; Di Giovanni and Levchenko, 2012).

Without a power law tail, the argument for idiosyncratic shocks causing aggregate volatil-

ity falls apart. Here, the estimation of the power law passes from important to strictly

necessary.

I should clarify that even if the data reject a power law for a specific application,

3



it does not mean that the power law is not a useful tool; for instance, it considerably

reduces complexity in firm heterogeneity models like Melitz (2003), or models of preferential

attachment in social networks (Jackson, 2010). However, the existence and importance and

results of models of firm heterogeneity, for example, do not depend on the specific shape of

the upper tail of the distribution; the power law just makes the algebra easier.

I find results that are in line with expectations (that a power law distribution fits

the U.S. firm size distribution for many years), and some new results. Depending on the

specification (e.g., whether petroleum companies like BP are included or not), France and

Germany confidently reject the null hypothesis that their firm size distributions are best

fit with power laws. Canadian datasets for firms reject power law distributions across the

board, but when the unit of observation is an establishment, Canadian size distributions do

not reject the power-law hypothesis.

As an application, I use the estimated power laws to estimate the implied contribution

of idiosyncratic shocks to aggregate volatility in different countries. The crucial element

is the herfindahl of the size distribution; I use the power law to calculate the implied

herfindahl and the resulting aggregate volatility, and compare it to the empirical herfindahl

and the herfindahl of the alternative tail distributions. As the tail of a dataset deviates

farther from a power law, the power law herfindahl deviates much farther from the empirical

herfindahl, vastly overstating the contribution to idiosyncratic shocks to aggregate volatility.

That the power law distributions produce results that run strongly counter to the data

is a consequence of a seemingly well-fit distribution failing exactly where it matters in

economics—in the top 10 or 20 firms.

The paper proceeds as follows: Section 2 describes the methodology, Section 3 outlines

the datasets used, and Section 4 gives results. Section 5 gives an application of how the

estimates can affect economic phenomena, and Section 6 concludes. More estimation and

dataset details can be found in Appendices 7 and 8.

2 Methodology

The methodology consists of two parts: (1) for each dataset, estimate each alternative dis-

tribution; (2) perform statistical tests to differentiate between possible hypotheses regarding

the existence of power-laws. There are three distributions I consider: the power-law, log-

normal, and power-law with exponential cutoff. The log-normal is a commonly proposed

alternative to the power-law, and the power-law with exponential cutoff is an alternative

proposed for degree sequences in social networks. Both have thinner tails compared to

power-laws.
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2.1 Upper-tail distribution estimation

Given a dataset of firm sizes X = {xi : i ∈ 1, . . . , N}, we need to estimate where the upper-

tail xmin begins, and the shape of the distribution above it. We start with estimating the

cutoff and scale exponent of the power-law, and then apply that same cutoff to the other

distributions to ensure a fair and accurate comparison.

2.1.1 Power-law

A power-law distribution in the upper-tail follows the following density function

f(x) = Cx−α, α > 1, x ≥ xmin > 0, (1)

where α is the scale exponent and C is a constant, and xmin is the value that defines the

upper tail. For details on the sources of power-laws in the world of economics, see Gabaix

(2009). For our purposes, a power-law means a linear relationship between the size of an

individual and the empirical counter-cdf (one minus the empirical cdf) on a log-log plot,

everywhere in the upper tail. If the top 5 or 10 firms in the data diverge from the linear

relationship, then the firm size distribution is not truly a power-law, in the sense that the

important implications of power-law distributions don’t hold (e.g., the granular hypothesis

of aggregate volatility no longer applies).

Given xmin, I use the MLE α̂(xmin) as the estimate of the scale exponent. Then the

estimate x̂min is the value of xmin that minimizes the Kolmogorov-Smirnov statistic D, the

maximum distance between the cdf of the power-law fit and the ecdf, E(x).

D = max
x≥xmin

|E(x)− F (x|α̂)| (2)

We use x̂min = minxmin D as the cutoff for all distributions, and α̂ = α̂(x̂min) as the estimated

power-law scale exponent. For more details, see Appendix 8.

2.1.2 Log-normal

The log-normal distribution is a common alternative to the power-law due to its skewness

and association with Gibrat’s law. The log-normal density is defined as:

f(x) =
1√

2πσx
e−

(log x−µ)2

2σ2 , x > 0 (3)
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To compare it directly to the power-law distribution, I truncate the distribution at xmin.

Write the truncated distribution as:

h(x) =
f(x)

1− F (xmin)
(4)

so that the log-normal distribution is only defined in the upper tail and sums to 1 on the

interval [xmin,∞). MLE estimation of the parameters, after using x̂min from the power-law

estimation to compare it fairly to the estimated power-law distribution.

2.1.3 Power-law with exponential cutoff

The power-law with exponential cutoff has a power-law-like tail up to a point, then has a

exponential-like tail after that. The power-law is a special case of the power-law with expo-

nential cutoff, which means it, by definition, can’t fit worse than a power-law. Nevertheless,

except in that special case, it is not scale-free, and thus does not display the same economic

properties as a true power-law. Its density is

f(x) = Cx−αe−λx, (5)

where the constant C = [e−xminλΦ(e−λ, α, xmin)], and Φ(z, s, a) =
∑∞

i=0
zi

a+i

s
is the Lerch

Phi function. Again, it takes x̂min as given from the power-law KS statistic minimization.

When a distribution looks like a power-law everywhere but curves down at the end,

one usually sees the justification “the distribution is a power-law but for finite-size effects”

or “the power-law may hold only over a bounded range”, meaning the very tip of the

distribution doesn’t extend to the very largest firms. These distributions are more likely to

be power-law with exponential cutoffs than true power-laws, and since we care most about

the very biggest firms, we would like to be able to statistically differentiate between the two

types of distributions.

2.2 Tests

I start with the null hypothesis that the upper tail of the firm size distribution is a power-law,

consistent with the literature. If the tests reject that hypothesis for a certain dataset, then

that informs our understanding of the firm size distributions across countries or dataset

types. There are two relevant tests: first, does the data directly reject the power-law?

Second, does the data reject the power-law in favour of an alternative distribution?
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2.2.1 Null hypothesis Hd
0 (direct): the upper tail is a power-law

Clauset et al. (2009) proposes a semi-parametric bootstrap test to generate p-values for

the power-law null hypothesis Hd
0 . The idea is to simulate the data as if it were really

a power-law, run the estimation procedure again. Simulating this 1000 times gives a null

distribution of KS-statistics Pr(D). If D∗ is the KS-statistic for the best fitting power-law

distribution, then the p-value for this model is defined as the probability of observing, under

the null distribution, a KS-statistic at least as extreme as D∗. So p = Pr(D ≥ D∗) is the

fraction of simulated datasets with KS statistics larger than that of the empirical dataset.

2.2.2 Null hypothesis Ha
0 (alternative): the upper tail is fit equally well by a

power-law and the alternative distribution

A set of likelihood-ratio tests can distinguish between the power-law and alternative dis-

tributions. Given the log-likelihoods of the power-law (Lpl) and an alternative distribution

(Lalt), the test likelihood-ratio test statistic is

R = Lpl − Lalt, (6)

where the sign of R, if deemed significantly different from 0, gives evidence for or against

the null hypothesis Ha
0 , that the data are fit equally well by a power-law and the alternative

distribution.

3 Data

I use data on firm sizes from several sources. First, Bureau van Dijk’s OSIRIS database

contains sales and identifying information on globally listed public companies, including

34,000 listed, 3,500 unlisted and 7800 delisted companies between 1900–2100. Second, the

Fundamentals Annual section of the Compustat North America database. Both datasets

come from Wharton Research Data Services (WRDS, 2018). I also investigate datasets with

public and private firms in Canada. These are the Annual Survey of Manufactures, and

the T2-LEAP administrative tax and employment dataset. For each, I use gross sales as a

measure of size to be consistent with the other datasets.

Table 1 shows the summary statistics for each country. The US Compustat data is

labelled “USA (Compustat)”, while every other country is OSIRIS. OSIRIS data typically

covers the period 1984–2016, with some exceptions (China’s data starts in 1992 and Taiwan

in 1995), while the Compustat data starts in 1961. Each country dataset is normalized by

the median firm within each year, so the median for each dataset is 1. The data are clearly
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Table 1: Summary statistics of firm sizes by country and dataset

Country Period N obs. Mean 3rd Qu. Max

Australia 2000–2016 510 35.5 19.9 1541.0
Bermuda 2001–2016 313 8.0 7.3 130.9
Canada 1996–2016 610 42.3 26.4 1043.9
Canada (ASM) 1973–1999 32622 9.0 4.0 11728.8
Canada (ASM) 2000–2011 52937 10.0 3.5 16518.5
Canada (ASM, firms) 1973–1999 28057 14.8 3.5 24122.6
Canada (ASM, firms) 2000–2011 47566 12.8 3.1 26131.9
Canada (T2, firms) 2001–2009 1412787 10.8 3.3 14035.5
Cayman Islands 2006–2016 452 7.6 7.5 152.4
China 2000–2016 1351 13.8 7.1 2861.8
France 1998–2016 363 58.4 25.4 2699.7
Germany 1998–2016 340 49.7 21.1 1674.5
Great Britain 1987–2016 685 44.7 18.2 6270.1
India 2000–2016 1288 29.9 14.7 3876.3
Japan 1996–2016 1159 10.6 7.0 567.2
Korea 2008–2016 288 19.5 5.6 2899.7
Malaysia 1996–2016 445 9.9 6.1 1047.3
Taiwan 2007–2016 297 16.0 7.7 762.3
USA 1984–2017 2544 26.3 18.2 3096.1
USA (Compustat) 1961–2014 2974 20.2 13.8 1675.8

Notes: the statistics are averages of all available years. E.g., ‘N obs.’ is the average number of observations
per year. Each dataset is normalized within years by the median firm. Sources of datasets other than
OSIRIS are indicated in parentheses. Non-OSIRIS Canadian datasets are confidential microdata. ASM
is the Annual Survey of Manufactures (all manufacturing establishments with more than $30,000 in sales.
The samples are divided into 1973–1999 and 2000–2011 because of a survey changes. If labelled ‘firms’, the
establishment data are aggregated up to the ultimate parent (firm) level, to better compare with the public
firm data sources. T2 is data from all firms in Canada derived from administrative tax records. The sample
is much larger and not restricted to manufacturing.

skewed right, with means up to 20 times higher than medians for some countries, and even

4 times higher than the 75th percentiles of the distributions.

Later, I test robustness of the results to removing financial and petroleum firms from

the datasets.

4 Results

In this section, I present the results of the power-law estimations, the alternative distribution

estimations, and the tests that distinguish between them.

4.1 Power-law estimations

For a power-law to exhibit scale-free behaviour, the estimated scale exponent must satisfy

2 ≤ α̂ < 3. A scale parameter less than 2 isn’t consistent with a stable distribution, but
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variations in the data can result in estimating a scale exponent less than 2. Therefore, for

each country, one must consider all possible estimates across years to analyze the behaviour

of a single country; Broido and Clauset (2018) use a similar approach to analyze separate

components of a single network dataset.

Figure 4 plot the densities of scale exponents for each country. In this figure, I only

plot estimated exponents that later aren’t rejected by the statistical tests. The Zipf law’s

exponent of 2 is denoted with a vertical red line in each plot. In the left panel, all industries

are included in the dataset, and in the right panel, finance, insurance, real estate and

petroleum-related industries are removed. The results are striking—across countries, for all

All industries Excl. some industries

1.6 2.0 2.4 2.8 3.2 1.6 2.0 2.4 2.8 3.2
US (C)

US

TW

MY

KY

KR

JP

IN

GB

CN
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Estimated scale exponent

C
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nt
ry

Figure 2: Exponent distributions

Notes: the left panel includes all non-bank firms in all industries. The right panel drops all firms in Finance,
Insurance, Real estate and petroleum (NAICS 211, 52 and 53). The ‘Zipf‘ power law exponent of 2 is denoted
with a red vertical line in each plot. Estimated scale exponents are only shown for distributions that aren’t
rejected in favour of an alternative distribution.

distributions that aren’t rejected in favour of alternative distributions, the mean estimated

scale exponent is around 2, with the U.S. coming in slightly higher at a little less than 2.5.

For power-law estimations that aren’t rejected by the data, the results bolster theories that

require scale-free firm size distributions.

However, there seems to be significant variation in the estimated exponents, and a

closer look suggests there is a relationship between the estimated exponent and the number

of observations in the tail of the distribution. In Figure 3, I plot the estimated scale

exponents vs. the number of observations in the tail of the distribution (which depend on

the estimated x̂min). For smaller countries (or a strict xmin, the scale exponent tends to be
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Figure 3: Exponents vs. number of observations

Notes: estimated scale exponents are shown for all datasets, whether or not they are rejected in favour of
alternative distributions. There is a clear negative relationship between the number of observations in the
tail (which depends on the estimated x̂min and the estimated scale exponent α̂.

a bit larger, while larger countries (and countries with a smaller, less restrictive xmin) tend

to be closer to satisfying Zipf’s law. This contradicts some ideas about the effect of trade

on the firm size distribution—theory predicts that smaller countries would have as large or

larger power-law exponents for their firm size distributions, because the most productive

firms get access to markets much larger than other domestic firms, which skews the firm

size distribution more than it otherwise would (Di Giovanni et al., 2011; Di Giovanni and

Levchenko, 2012, 2013). It’s difficult to get a precise answer to that question here, since the

lack of data on private firms may bias our results, but for the datasets listed here, countries

that satisfy Zipf’s law tend to be larger than others; and that’s conditional on the data

not rejecting the power-law fit, let alone the smaller countries that we will see that reject

the power-law outright. Furthermore, in one case in which the power-law is rejected, I

re-estimate the model fits with survey and administrative datasets, confirming the rejected

power-law.

4.2 What do the estimated distributions look like?

To get a feel for the shape of each possible distribution, here are visual representations of the

differences between the alternatives (including the empirical cdf). For a few examples, I plot

the estimated power-law, log-normal and power-law with exponential cutoff distributions,
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Figure 4: Estimated and empirical distributions

Notes: these figures for the year 2005. CA is Canada, FR is France, US is USA, US (C) is USA data from
Compustat. The data are plotted as points, and each estimated distribution is plotted as a line.

along with the empirical cdf. Firm size (log-scale) is on the x-axis, and the counter cdf

is on the y-axis (1 − F (Size)). The power-law with exponential cutoff typically fits the

data very well. For the US, however, the dataset with more observations (OSIRIS, with

881 observations in the tail) is a power-law with exponential cutoff, while the other dataset

(Compustat, with 78 observations in the tail) looks like a power-law. If one restricted

the OSIRIS US dataset to a similarly high xmin, one might succeed in fitting a power-law

equally well as the power-law with exponential cutoff (or log-normal). However, the xmin

was chosen to fit a power-law as well as possible; the only problem is there’s a lot more data

in the lower part of the upper-tail (i.e., closer to xmin than to the maximum size x), and that

part of the distribution acts more like a power-law (a linear relationship in Figure 4) than

the upper part of the upper tail. Keep in mind that x̂min is chosen to match the empirical

cdf E(x), not the relationship between E(x) and x.

To assess the fits statistically (instead of visually), I now move to the hypothesis tests.

4.3 Direct and alternative hypothesis tests

The results of the tests, shown in Table 2, seem to strongly separate countries into those

with power-law firm size distributions and those that reject power-law firm size distributions.

Looking at the direct tests first, the null hypothesis Hd
0 is rejected by the median p-value

in Canada, Germany, France, Japan, and the USA (OSIRIS dataset). Canadian microdata

11



(as opposed to data on public firms only) give a slightly different answer: when the unit

of observation is a firm, the results are consistent with using data on public firms only.

However, when the unit of observation is an establishment, the size distributions do not

reject the power-law directly or in favour of any alternative distribution I tested. For a

more detailed look at Canadian microdata results, see Figure 5.

All other countries do not reject the null hypothesis that the upper tail of the data is gen-

erated by a power-law. However, this doesn’t answer whether or not there’s an alternative

distribution that fits the data better. For that, we turn to the p-values for H log-n
0 and Hpexp

0 .

The alternative distribution tests show similar results: the same countries reject power-laws

for alternative distributions. A few more countries come closer to rejecting power-law distri-

butions for alternatives, but p-values less than 0.1 (e.g., Australia, Bermuda, Great Britain,

Cayman Islands, and the USA (Compustat). The other countries still do not reject the null

hypothesis that the power-law fits the data as well as the alternative distributions. To make

an overall conclusion, I take into account the proportion of years a country rejects each null

hypothesis. If 70% or more of the tests reject the null hypothesis, I classify the country as

rejecting the power-law distribution. These countries are: Canada, Germany, France, and

Japan. Most other countries reject the alternative distribution hypothesis less than 40%

of the time, with less rejecting the direct null hypothesis HD
0 . The USA is the only one

more difficult to classify. The Compustat dataset rejects the direct hypothesis only 26% of

the time, while the OSIRIS dataset rejects it 58% of the time. The proportion rejecting

in favour of the power-law with exponential cutoff distribution are closer at 55 and 61%;

however, this isn’t conclusive evidence, especially with the existing literature supporting

the power-law firm size distribution of the USA. One wonders whether a test incorporating

the panel nature of the data could help differentiate the alternatives: for instance, can a

power-law distribution suffer a few negative shocks at the very tip of the distribution to

temporarily thin out the tail.

5 Application

The contribution of idiosyncratic shocks to aggregate volatility depend on the herfindahl of

firm sizes in the economy (Gabaix, 2011; Di Giovanni and Levchenko, 2013; Di Giovanni

et al., 2014),

h =

√√√√ N∑
i

w2
i , (7)

where wi is the weight of firm i in the economy. The bigger the herfindahl, the bigger

the contribution that idiosyncratic shocks make to aggregate volatility. The bigger the

biggest firms are, the bigger the herfindahl, and finally, a power-law exponent between 2

12
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Figure 5: Boxplot of p-values of the test of null hypothesis Hpexp
0 for each Canadian micro-

dataset. Each dot represents a p-value for one year of a dataset.

Notes: These are boxplots of the p-values from the test of power-law versus the alternative hypothesis that
the distribution is better fit by a power-law with exponential cutoff (Hpexp

a ). The three datasets on the
left use firms as the units of observation, and definitively reject the null hypothesis for all years. The two
datasets on the right use establishments as the units of observation, and do not reject the null hypothesis
that the data is fit well by a power-law.
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Table 2: Summary of p-values for different tests, by country and dataset.

Median p-value for: % rejecting:

Country HD
a H log-n

a Hpexp
a HD

a H log-n
a Hpexp

a

Australia 0.28 0.16 0.08 33 13 40
Bermuda 0.28 0.17 0.06 14 7 43
Canada 0.00 0.01 0.00 100 84 100
Canada (ASM 73–99) 0.46 0.19 0 26
Canada (ASM 00–11) 0.86 0.40 0 0
Canada (ASM 73–99, firms) 0.18 0.00 0 100
Canada (ASM 00–11, firms) 0.19 0.00 0 100
Canada (T2, firms) 0.00 0.00 100 100
China 0.14 0.20 0.19 33 0 40
Germany 0.00 0.02 0.00 94 94 100
France 0.01 0.01 0.00 100 94 100
Great Britain 0.20 0.16 0.07 46 39 43
India 0.54 0.38 0.29 20 0 13
Japan 0.03 0.02 0.00 74 63 84
Korea 0.34 0.70 1.00 14 0 0
Cayman Islands 0.13 0.18 0.07 44 33 44
Malaysia 0.18 0.18 0.14 21 5 21
Taiwan 0.51 0.41 0.46 0 0 0
USA 0.01 0.01 0.00 58 55 61
USA (Compustat) 0.38 0.37 0.42 29 29 39

Notes: HD
a is the alternative hypothesis that the data are not well fit by a power-law; H log-n

a is the alternative
hypothesis that the data are better fit with a log-normal; Hpexp

a is the alternative hypothesis that the data
are better fit with a power-law with exponential cutoff. Sources of datasets other than OSIRIS are indicated
in parentheses. Non-OSIRIS Canadian datasets are confidential microdata. ASM is the Annual Survey of
Manufactures (all manufacturing establishments with more than $30,000 in sales. The samples are divided
into 1973–1999 and 2000–2011 because of a survey changes. If labelled ‘firms’, the establishment data are
aggregated up to the ultimate parent (firm) level, to better compare with the public firm data sources. T2
is data from all firms in Canada derived from administrative tax records. The sample is much larger and
not restricted to manufacturing.

and 3 is required for the biggest firms to be big in an economy with a lot of firms. I focus

on the last point. If we claim the firm size distribution is best fit by a power-law, the

estimated power-law distribution should imply a herfindahl close to the data. If not, the

power-law distribution doesn’t agree with the main statistic that governs the existence of

the microfoundations of aggregate fluctuations.

Therefore, I use each estimated power-law and power-law with exponential cutoff dis-

tributions to simulate 1000 datasets for each country and year, and calculate the implied

herfindahls. Then I take the mean across all the simulated datasets. The results are in

Table 3. The empirical herfindahls are listed in the first column; the simulated herfindahls

of the fitted power-law distributions are in the second column (labelled ‘Power’), and the

simulated herfindahls of the fitted power-law with exponential cutoff distributions are in

the third column ‘P-exp’. The p-exp distributions are much closer to the empirical herfind-
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Table 3: Herfindahls for each predicted distribution and their differences from the data, by
country

% difference
Herfindahls from data

Country Data Power P-exp Power P-exp

Australia 0.196 0.399 0.200 103.1 2.0
Bermuda 0.162 0.276 0.162 70.4 0.1
Canada 0.124 0.464 0.132 275.5 6.9
Canada (ASM 73–99) 0.100 0.156 0.092 55.9 -8.2
Canada (ASM 00–11) 0.087 0.167 0.100 92.2 15.8
Canada (ASM 73–99, firms) 0.102 0.381 0.094 274.8 -7.9
Canada (ASM 00–11, firms) 0.089 0.343 0.093 284.1 4.3
Canada (T2, firms) 0.019 0.176 0.023 820.6 20.1
Cayman Islands 0.138 0.288 0.137 107.9 −1.1
China 0.210 0.309 0.164 47.5 −21.7
France 0.176 0.643 0.182 265.4 3.6
Germany 0.181 0.635 0.199 250.4 9.7
Great Britain 0.271 0.434 0.210 60.3 −22.4
India 0.198 0.335 0.205 69.0 3.4
Japan 0.110 0.363 0.117 231.3 6.4
Korea 0.549 0.321 0.321 −41.5 −41.4
Malaysia 0.242 0.344 0.183 42.0 −24.3
Taiwan 0.274 0.391 0.285 42.7 3.7
USA 0.120 0.282 0.112 134.4 −7.3
USA (Compustat) 0.112 0.216 0.116 92.5 3.5

Notes: The first three columns are the herfindahls given by the distributions: data, the estimated power-law
distribution, and the estimated power-law with exponential cutoff. The last two columns are the percentage
differences between the estimated distribution’s herfindahl and the data’s herfindahl.

ahls, with most being less than 10% different than the data, whereas the implied power-law

herfindahls can be almost 3 times higher than the data’s herfindahls. The Power and P-exp

herfindahls are equally bad in some countries that did not reject the previous hypothesis

tests, like Great Britain and China.

In Canadian microdatasets, the power-law with exponential cutoff distributions produce

herfindahls much closer to the data than a power-law alone, even though the tests do not

reject the fact that the data is represented by a power-law. For example, in Canadian

establishment data from 2000–2011, of which all tests do not reject the hypothesis that a

power-law generated the data, power-law herfindahls are 92.2% higher than the data on

average, and the power-law with exponential cutoff generates herfindahls only 15.8% higher

than the data. The results from Canadian microdatasets when the unit of observation is

a firm are consistent with other public firm data, with power-law distributions generated

herfindahls two to three times higher than the data on average, versus herfindahls of less

than 10% in absolute value from power-law with exponential cutoff.
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This highlights the importance of estimating distributions rigourously if one is to use

the estimated distribution in crucial model calculations later. One should not rely solely on

an OLS estimate of a power-law exponent as a justification for and basis of statistics that

generate counterfactuals for economic effects and policies.

6 Conclusion

My goal here is to apply recent developments in power law estimation (Clauset et al., 2009;

Broido and Clauset, 2018) to reject or fail to reject the null hypothesis that the firm size

distribution is best fit with a power law. I use several sources of firm microdata: Compustat,

OSIRIS and confidential microdata sources on Canadian establishments and firms. In each

dataset, and each year, I estimate the upper tail cutoff xmin, the power law scale exponent

α, as well as alternative distributions with thinner tails (the log-normal, and the power

law with exponential cutoff). I calculate p-values for each important hypothesis: does the

data reject the power law fit? If not, does the data reject a power law fit in favour of an

alternative distribution (specifically, one with thinner tails).

I find that a power law distribution fits the U.S. firm size distribution for most years,

but France, Germany, and Canada confidently reject the null hypothesis that their firm size

distributions are best fit with power laws. Results from confidential Canadian microdata

support these results: when the unit of observation is a firm, Canadian size distributions

consistently reject the hypothesis that the data are generated by a power-law distribution;

on the other hand, when the unit of observation is an establishment, the Canadian size

distributions cannot reject the power-law null hypothesis.

As an application, I use the estimated power laws to estimate the implied contribution

of idiosyncratic shocks to aggregate volatility in different countries. The crucial element

is the herfindahl of the size distribution; I use the power law to calculate the implied

herfindahl and the resulting aggregate volatility, and compare it to the empirical herfindahl

and the herfindahl of the alternative tail distributions. As the tail of a dataset deviates

farther from a power law, the power law herfindahl deviates much farther from the empirical

herfindahl, vastly overstating the contribution to idiosyncratic shocks to aggregate volatility.

That the power law distributions produce results that run strongly counter to the data

is a consequence of a seemingly well-fit distribution failing exactly where it matters in

economics—in the top 10 or 20 firms.
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7 Appendix–Robustness

To test robustness of the results to different specifications, I estimate and test all distribu-

tions again after removing petroleum and FIRE industries (fire, insurance and real estate).

The results are very consistent with the results in the text, suggesting the shape of the firm

size distribution doesn’t depend on excluding certain types of firms.

7.1 The truncated Pareto distribution

The truncated Pareto distribution is a common alternative proposed to limit the upper tail

of the size distribution.

f(x) = Cx−α, α > 1,∞ ≥ xmax ≥ x ≥ xmin > 0, (8)

However, I did not find this distribution to fit all that well. Figure 6 reproduces Figure 4

with an estimated truncated Pareto distribution. The truncated Pareto distribution does

poorly compared to the power-law with exponential cutoff, especially when the data are

closer to a power-law (e.g., in the US).

8 Appendix—Theory

This appendix describes the empirical methodology in more detail. Much of this is also

described in detail for a different application in Clauset et al. (2009); Broido and Clauset

(2018).
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Table 4: Summary of p-values for different tests, by country and dataset.

Median p-value for: % rejecting:

Country HD
a H log-n

a Hpexp
a HD

a H log-n
a Hpexp

a

Australia 0.33 0.25 0.19 20 7 33
Bermuda 0.37 0.21 0.08 0 0 27
Canada 0.00 0.02 0.00 94 78 100
China 0.10 0.13 0.09 47 7 47
Germany 0.00 0.02 0.00 94 94 100
France 0.00 0.01 0.00 94 94 94
Great Britain 0.29 0.30 0.48 39 25 29
India 0.36 0.34 0.27 13 0 7
Japan 0.04 0.03 0.00 68 63 84
Korea 0.30 0.64 1.00 0 0 0
Cayman Islands 0.07 0.08 0.02 50 38 75
Malaysia 0.23 0.19 0.17 19 0 6
Taiwan 0.58 0.45 0.53 0 0 0
USA 0.01 0.02 0.00 65 55 68
USA (Compustat) 0.24 0.39 0.47 32 29 39

Notes: HD
a is the alternative hypothesis that the data are not well fit by a power-law; H log-n

a is the alternative
hypothesis that the data are better fit with a log-normal; Hpexp

a is the alternative hypothesis that the data
are better fit with a power-law with exponential cutoff. Sources of datasets other than OSIRIS are indicated
in parentheses.

8.1 Distributions

8.1.1 Power-law distribution

A power-law of firm sizes above xmin follows this distribution:

f(x) = Cx−α, α > 1, x ≥ xmin > 0, (9)

where α is the scale exponent and C is a constant, and xmin is the value that defines the

upper tail. On a log-log scale, this has the form

log f(x) = logC − α log x (10)

which leads one to suggest OLS as an appropriate method to estimate α, after guessing an

appropriate xmin.
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Figure 6: Estimated and empirical distributions, with truncated Pareto

Notes: these figures for the year 2005. CA is Canada, FR is France, US is USA, US (C) is USA data
from Compustat. The data are plotted as points, and each estimated distribution is plotted as a line. The
truncated Pareto distribution is estimated MLE as described in Aban et al. (2006).

8.1.2 Log-normal distribution

The log-normal distribution is another alternative distribution that can have heavy tails

that also happens to be consistent with Gibrat’s law:

f(k) =
1√

2πσx
e−

(log x−µ)2

2σ2 , x > 0 (11)

Then write the distribution truncated below at xmin as

h(x) =
f(x)

1− F (xmin)
(12)

so that the log-normal distribution is only defined in the upper tail and sums to 1 on the

interval [xmin,∞). MLE estimation of the parameters, after using xmin estimated as if it

were a power-law distribution, to compare it correctly.

8.1.3 Power-law with exponential cutoff

f(x) = [e−xminλΦ(e−λ, α, xmin)]x−αe−λx, (13)

where Φ(z, s, a) =
∑∞

i=0
zi

a+i

s
is the Lerch Phi function.
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8.2 Fitting the model, estimating xmin and α

Given xmin, one can estimate the scale exponent α via maximum likelihood. A typical

method to pick xmin is to plot rank-size on a log-log plot, and eyeball where the upper tail

of the distribution “starts to look linear”. In contrast, we use the Kolmogorov-Smirnov (KS)

minimization method described in Clauset et al. (2009) and Broido and Clauset (2018).

The KS method selects the xmin that minimizes the maximum difference in absolute

value between the empirical cumulative distribution (ecdf) E(x) on the observed tail x ≥
xmin and the cdf of the best fitting power-law F (x|α̂) on those same observations. The

α̂ is estimated via MLE as described above, given the xmin of the current step of the KS

method. The KS statistic is defined as

D = max
x≥xmin

|E(x)− F (x|α̂)| (14)

x̂min is the value that minimizes D, and α̂ is the corresponding MLE estimate given x̂min.

8.2.1 Testing goodness-of-fit

The power-law-fitting method will estimate (x̂min, α̂) for any distribution, whether or not

the data is from a power-law. To assess the fit, I estimate the p-value with a standard

semi-parametric bootstrap approach (Clauset et al., 2009; Broido and Clauset, 2018).

Given firm size data, of which ntail are x ≥ x̂min, with MLE α̂, I generate a synthetic

dataset as follows. For each of n synthetic values, with probability ntail/n I draw a random

number from the fitted power-law model, with parameters x̂min and α̂. Otherwise, I choose

a value uniformly at random from the empirical distribution below the upper tail, x <

x̂min. After n draws, this produces a synthetic dataset that closely follows the empirical

distribution below x̂min and follows the fitted power-law model at and above x̂min.

Then applying the previously defined power-law fitting procedure yields the null dis-

tribution of KS-statistics Pr(D). Let D∗ denote the value of the KS-statistic for the best

fitting power-law model for the empirical distribution. The p-value for this model is defined

as the probability of observing, under the null (power-law) distribution, a KS-statistic at

least as extreme as D∗. Hence, p = Pr(D ≥ D∗) is the fraction of synthetic datasets

with KS statistic larger than that of the empirical dataset. Following standard practice, if

p < 0.1, I reject the power-law as a plausible model of the distribution, and if p ≥ 0.1, then

I fail to reject the model. Failing to reject does not imply the model is correct, only that it

is a plausible data generating process.
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8.3 Likelihood-ratio tests

Given two candidate distributions that fit the data, I use likelihood-ratio tests to differenti-

ate between them. Let LF be the log-likelihood of the fit of distribution F , where F could

be pl (power-law), log-n (log-normal), or p-exp (power-law with exponential cutoff). The

likelihood-ratio statistic (LRT) is given by the difference between the log-likelihood of the

power-law and the log-likelihood of the alternative distribution, R = Lpl − Lalt.
When R > 0, the power-law is a better fit to the data, and when R < 0, the alternative

is a better fit to the data. When R = 0, the data cannot distinguish between the two

models. From here, I calculate a p-value against the null model of R = 0, and reject the

null hypothesis if p < 0.05 and interpret the sign of R as evidence for one distribution over

another. A p-value of 0.05 is slightly more strict than the p-value of 0.1 used in Broido and

Clauset (2018), but is more consistent with existing economics research on power-laws, and

more conservative at the same time.
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